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ELEMENTAL-FILTER DESIGN CONSIDERATIONS

1. Introduction

In Office Note 165, Shuman noted that the G-filter (a seven-point -
operator) used in the LFM postprocessor can be simulated by using three
3-point symmetric smoothing elements of the type he developed in his 1957

Monthly Weather Review paper on smoothing and filtering in NWP.

" In this note, T Will show how the relation given by Shuman for the G-
filter relates to the design criteria for that filter, developed in Office
Note 57. IlI then show how the progression from the five-point operator,
called the H-filter by Shuman, to the G-filter can be both extended and
modified. On the way, we encounter cpmplex roots for  a: filter response
functioanhich leads to an application of Shuman's method for avoiding
complex weights through the use of antisymmetric'three-point elemental
operators.

Finally, I'1l sketch a procedure fbr the calculation of the appropriate
three-point symmetric or antisymmetric elements that satisfy a large set
of conditions on the filter response function,

2. Relationship Between Expanded and FElemental Filters

Let dj be a set of real numbers forming a data set on an equispaced
array of points with indices j, Let wy denote a set of real numbers, and
let Y be a set of real numbérs formed from dj and wp by the relationship
1,

M
vy = Wo dy +‘ m;1 v (dyyy + dyop) - (1)



Provided that
M

Wy + mzlzwm =1 (2)

the linear transformation (1) may be called a filter. The properties of the
transformation are readily intefpreted if we select dj and ¥4 to be
represented by Fourier series. In view of (2) and the symmetry of (1), one
may treat a single element of the Fourier series representations of y4 and

dj,

d-

i D cos kjh

(3)

Y Y cos kjh,

in which h is the spacing between the data points and k is the wave number.

One may define
M

R(cos kh) W, + 21 2w, cos (mkh) : 4)
m=

and obtain from (3) and (1) the relation

= R(cos kh) ) (5)

=]

R is called the filter response function.
It is convenient to define
z = cos'kh : (6)

and to use the recurrence relationship,

cos mkh = [2 cos(m-1)khlz - [cos(m=2)kh] (7)
to rewrite (4) as
M
m
R(g) = | cp¢ (8)
m=0
The coefficients c_ are real valued and may be calculated from the w's.

m



. ‘ L =3-

. The variable ¢ is continuous; for our purposes its significant range is
- 1272+ 1. The value, £ = — 1, is taken on when the function d has wave
length 2h; the value, ¢ = 0, is taken on when d has wave length 4h;: the
value ¢ -+ + 1 when the wave length becomes very large.
From (8), it is apparent that one may generally write,
R(Z) = cl(z-1) (E-1p) ... (5-1)] | (9)
In view of (2), one has R(+15 = 1 and
c = [Arr)A-ry) ... @)1 (10)
In view of the factored form (9), one is led to consider representing
the filter (1) by a series of elemental filters, each of which produces
one of the factors in (1). Following Shuman's 1957 paper, one may write
. the response of a three-point symmetric elemental filter as
0@ = v () )
where v is twice the weight assigned to the end points of the elemental
filter. Comparison of (11) and (2) shows that to eéch root ¥ there
corresponds a weight v,
v = (1-r)~1 (12)
One notes, however, that the roots r may be complex numbers; thus,
the v's may also be complex.
Generally, the complex roots occur in conjugate pairs because the

coefficients c, are real. To avoid dealing with complex numbers, Shuman

suggests (0ffice Note 125) the following methods?
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‘Let the complex conjugate roots be r,r* and the complex conjugate

weights v,v* be

v=A+ 1B
: (13)
v = A - 1B
with A and B real numbers.
Define
1
D = [(1-24)2 + 4B2]" (14)
and b = %(1-D) ' (15)
LD, (1-2A , Di
=== 4+
_ 14D 1-2A | D.4
c == -[8 +8] 7
:Note that a +b + ¢ =71L§énd that a, b, and c are real valued.
With these values of a, b, and ¢, Shuman shows that the filters
F.=af, ,+bf:+cfsyq
3 E 1 E 3 (18)
Fy=cF,  +bF +afF,,
have the response function,
T 1 ‘
S = 1 = - —-r¥% 19
(%) - eI N3] (g-r) (g~r*) (19
J

3. Filter Design Criteria

Since the action of a filter transformation can be expressed by a
response function in polynomial form, one may set design criteria to be
satisfied by the response function and fix the coefficients c; in equation (8).

Once the coefficients are fixed, the polynomial's roots may be determined.



-5~

From the roots r one obtains the weights v from equation (12). When
complex roots occur, one may use the antisymmetric elemental filters.
Through the use of 14 through 17, one determines the real valuéd weights
of the antisymmetric elemental filters.

Let's now consider the filters H and G. The H filter satisfies the

constraints,

R (+1) =1
"R = O (20)
R (-1) =0
Its response function may be written
Ry(z) = - %(g+1) (z-3) (21)
and its weights are v, = L, v, = - L.

The G-filter was designed to add suppression to the high wave number
response by appending the constraint
R°(-1) = 0 (22)
to thpse‘(ZO) of the H filter'é design. One obtains the filter response
function
Re(2) = - %(z+1)? (z-2) (23)
and the weights v, = L, v, = %,'v3= - lzuas pointed out by Shuman.
Further suppression of the high wave numbers may be obtained by
requiring additional derivatives of R to vanish at £ = - 1, The first
m-1 derivatives of R at .= - 1 will be set to zero, while the other

constraints of the H filter are still satisfied, by a filter with the



response function

|
1
N
o=
=
CarenY
SE
N
it
+
'—.l
S
=
YananY
™
|
5|
™o
S

R(z) = (24)

il
<
1
I
<
I
ke

with the weights, v, 2 .o o

Going back to the H filter, one might wish to improve its fidelity for
long waves. Suppose for example one desired R*"(+1) = 0 in addition to
the constraints (20). Wé_ﬁSg;the polynomial

= 2 3
R(Z) c. + clc + czr; + c3§ (25)

0

and the constraints

| R(+1) =1 = cg ¥ ey te, +cy
R°(+1) = 0 = c, + 2¢, + 3¢ .
1 2 3 N
(26)
R°7(+1) = 0 = 2c2 + 6(:3
R(-1) =0 = cg = ¢ tec, - cy
Solving (26) one obtains
7
Co_g—
_ 3
e =-3
2 8
e, -1
3 8
So the polynomial becomes
1
R(z) = 5(z% - 3c2 + 3z + 7) @27
One notes that ¢ = - 1 is a root of (27), so

R(D) = L) (22 = 4g + D) (28)



or after factoring the quadratic,
R(D) = (&) - 2+ /D - 2 - /). (29)

’Thﬁé;We encounter complex conjugate roots. The complex conjugate weights

are
1 V3
\)=—(E+1T+—]
(30
e o (L_ 7% )
vE = - (oo iy

With these weights, one may approximate the weights of the anti--
symmetric 3-point elemental filters. Approximation is necessary because

of the irrational number V3 appearing in (30). One gets

a = 1.227
b= - .366 (31)
c = .139

The virtue of this filter is that it doesn't yield amplification
anywhere in the range — 1 £z £+ 1. It differs in this respect from the
filter designed by Shuman, which does admit of very small amplification,
'The - filter response ét 47grid inter&als (z=0) is 0.875 compared with about
0.95 for the filter discussed by Shuman; at 5 grid intervals, the response

is about .96 as contrasted with unity.



4., Concluding Remarks

T was unable to generalize the form of the filter response function
when one requires higher-order derivatives of R to vanish at £ = +1 in
addition to the other conditions of the H-filter.

The elimination of any need to do complex arithmetic when using
Qé%ﬁaiﬁfféléméntal filters opens the way for a careful analysis of the
end conditions‘inflﬁéﬁ¢é when elemental filters are used recursively.

I have coded a two—diﬁensional application of the filter whose

response function is given in (24). The code is attached. When

KINDEX = 3, this is a 9 x 9 operator that I will call the 'N-filter.'
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